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Calculation of Adsorption Bed 
Capacity by the Theory of Statistical Moments 

OTTO GRUBNER and DWIGHT W. UNDERHILL 
SCHOOL OF PUBLIC HEALTH 

HARVARD UNIVERSITY 

WSTON, MASSACHUSETTS 02115 

Summary 

Using the Statistical Monimts Theory, :I system of equations has been 
developed which provides n nmv nppro:ich to understanding dynamic 
gas adsorption. These rquntions dtwribe adsorption breakthrough curves 
in a simple form which exhibits n close corrrlation between theory and 
published experiments. Brvanse thesr, equations are readily understood 
from a physical viewpoint, i t  is believed that they will not only help 
to clarify our concepts of dynamic! adsorption. but will also improve our 
understanding of the physical meaning of what takcs place in an ad- 
sorption bed. 

1. BASIC CONCEPTS 

The efficiency of mass transfer plays an important role in adsorption 
from moving gas streams. As a general rule, the amount of adsorbate 
retained by dynamic adsorption from a flowing gas stream is smaller 
than the amount corresponding to equilibrium conditions. To illustrate 
this effect, let us suppose that it is required to remove 90% of an un- 
desired product from a gas stream. This permits an adsorption bed 
to be used until there is a breakthrough of 10% of the input concen- 
tration of the gas being removed. Figure 1 shows a distribution of the 
adsorbate across an adsorption bed. The over-all adsorption efficiency, 
calculated from the ratio of the amount of adsorbate actually retained 
on the bed to the amount of adsorbate required to fully saturate the 
bed, depends on the distribution of ads0rbat.e across the bed a t  the 
time of breakthrough. A5 shown in this paper, the effects of this 
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CALCULATION OF ADSORPTION BED CAPACITY 557 

distribution can be calculated by the method of statistical moments 
(1) .  This new knowledge should lead to improvements in the design 
of adsorption processes for solvent recovery, air pollution abatement, 
removal of fission products, etc. 

This paper will consider only the dynamic adsorption of gases on 
porous adsorbents. However, the theory is quite general and may 
apply as well to other separation processes, such as thin-layer chro- 
matography and gas-liquid chromatography. 

1 .l. Some Basic Assumptions 

Certain basic assumptions have been made: 
1.1.1. The adsorption bed is cylindrical, with a length, L,  and a 

cross-sectional area, &. 
1.1.2. The bed is evenly filled with spherical adsorbant particles 

having a diameter, 2R. It is not necessary that the particles be 
spherical ; calculations can be babed on other absorbent particle shapes 

1.1.3. Wall effects are negligible. This requires that  the bed 

1.1.4. The fluid phase streams between the particles in a free 

(2 ,  3 ) .  

diameter be at  least 12 times greater than the particle diameter. 

volume defined as the interparticle void volume. 

1.2. Definitions of Porosity 

Precise definitions of porosity are vital to the concepts being dis- 
cussed here. Thc interparticle void volume per unit volume of the 
adsorption bed is called the external porosity, c ~ .  The external porosity 
is assumed to have the same value throughout the bed. The absorbent 
particles are also porous; in fact, each adsorbent particle can be 
conceived of as a conglomerate of many smaller particles. The fraction 
of void volume in each particle is a l ~ o  assumed to be a constant, de- 
noted as p. In  a unit volume of the adsorption bed, there are (1 -c?) 

units of volume occupied by the adsorbent particles and therefore 
p(1 - c?)  = C ,  units of intraparticle void volume per unit volume of 
adsorption I d .  The over-all porozity, c,,, is the sum of the internal 
and external porosities, i t . ,  c0 = + ce. The over-all porosity gives 
the fractional volume of the adsorption bed accessible to molecule3 
in the gaseous phase. Later in this paper the ratio of internal porosity 
to the over-all porosity, c = e,/co, will be needed. 
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558 0. GRUBNER AND D. W. UNDERHILL 

1.3. Composition of Feed 

The gaseoua inixturc fed to the atlm-ption h i  13 asbuiiied licre to 
consist of carrier g a m  and nclaorlxitc5 This p a p -  iy restricted to  a 
binary mixture of gnscs coiisi?tiiig of a carricr gab with a single :id- 

sorbate present at  a much lower concciitration. 

1.4. Interparticle Flow Velocity 

The carrier gas ib asyumed t o  flow in the interparticle spaces with 
:in avcrage linear velocity, 11 = U I / Q E ~ ~ ,  where zc represents the  
volumetric flow rate,  aiitl Q and tc are defined abore.  It should be 
noted t h a t  the average interpartick velocity, 1 1 ,  will always be greater 
than either t'he superficial vclocity ( the  flow velocity calculated from 
the ratio zc/Q),  or thc  awlrage flow velocity based on the  ovcr-all 
porosity (calculated from the ratio W / Q C ~ ) .  The interparticle flow 
velocity is u d  a s  the h i c  flow parnmc,ter because it leads to simpler 
equations. 

1.5. Assumption of a Linear isotherm 

The adsorption proress i? liiiiited to  the. region of a linear adborption 
isotherm; i.e , t he  amount :id<orbc~l at  eqiiilibriuiii i. directly pi o- 
portional t o  the concentration of ;td.orbntc. The more genciral p r o c d u r c  
of considering a iionlincar isotherni lend. to sci+erc mathematical 
difficultieb, although solution5 arc availnblc for apccinl ca,cs (4-6) .  I n  
this paper wc h:tvc ignored th(, prol)lein of a nonlinear ihothcrm, and 
we justify this oini..;ion for two roa~or i~ .  First ,  these equations are 
being devclopcd for thci clc?ign of  . t e im to r emow air  contaminant& 
For  this purpose, equations m e  iiecdetl which apply to the i*emoval of 
diluted gases and vapor?, :ind dilution gcncrally rcmoves any  ap- 
preciable nonlinearity from iiii ntl.orl)tion ibotlierin. Second, by 
developing ft general <elution for the linear rabc, rve provide a basis of 
comparison for nonlinear cases. 
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CALCULATION OF ADSORPTION BED CAPACITY 559 

increase can be brought about by filling the pores with a compound 
in which the adsorbate is highly soluble or by van der Waals’ forces 
originating a t  the pore surface. At equilibrium, the volumal equilibrium 
constant, K,, may be defined as K ,  = c,/c,. This equilibrium constant 
equals 1 if no volumal effects occur. 

1.6.2. Surface Adsorption. The surface adsorption equilibrium con- 
stant is defined as 

K ,  = n / u P  

where n represents the amount of adsorbate adsorbed on the surface 
per unit volume of pore space. For most untreated adsorbents, surface 
adsorption is more important than volumal adsorption. 

1.7. The Rate of Mass Transfer 

The over-all rate of mass transfer depends on the rates of several 
phenomena, and of these, the following are considered here: 

1.7.1. Mass Transfer across a Film Surrounding the Adsorbent Grains. 
If mass transfer is controlled by a film surrounding the particles, then 
the constant H ,  gives the rate of mass transfer per unit volume, per 
unit concentration difference across this film. 

1.7.2. Mass Transfer across a Film on the Pore Walls. This is a 
mechanism analogous t o  the first mechanism described above, the 
only difference being the location of the film. It is assumed to proceed 
with a rate constant H,. 

1.7.3. Pore Diffusion. The adsorbate moves through the intra- 
particle pore structure by a process characterized by an effective dif- 
fusion coefficient D,. 

1.8. Interparticle Phenomena 

Molecular diffusion of adsorbate in the interparticle spaces is 
important a t  low carrier gas velocities. We assume that  the contri- 
bution of molecular diffusion to the movement of the gas along the 
bed may be characterized by an effective diffusion constant D. 

A second interparticle phenomenon, “eddy diffusion,” results from 
velocity differences in the flow tlirough the bed packing. The best 
available description of this very complicated effect is found in 
Giddings’ monograph ( 3 ) .  Here we assume that  the over-all inter- 
particle diffusion cocfficient, may be expressed by the relationship 
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560 0. GRUBNER AND D. W. UNDERHILL 

D, = I1 + A u ,  wherc n is defined as above, A is thc constant of eddy 
diffusion, and u is thc interparticle velocity of the gas. 

2. MATHEMATICAL ANALYSIS 

The basic problem in dynamic adsorption is to describe the change 
of adsorbate concentration with tirnc a t  a given point in the bed 
(usually a t  the bed exit), taking into account the experimental con- 
ditions and the known mechanisms of mass transfer. Previous mathe- 
matical solutions (7-11) of this problem have not been universally 
successful. Some appear owrsimplificd, and others are difficult to use 
because they are expressed in terms of intcgrals requiring the use of 
computers for their evaluation. In home of these equations the 
dimensionless groups are very complex and their physical me:tning 
is difficult to interpret. As Kovach (122) recently stated. there is a 
real need for an irnprovcd method of analysis of adsorption beds. 

Reccntly a new theory ( 1 ,  2, 13) of gas-solid chromatography was 
developed using the statistical moments of the hroakthpough curve. 
This theory takes into account all m a s  transfer phenomena known 
to be important in dynamic adsorption and includes as special caws 
all previous solutions known to  us. The aim of this paper is to show 
that this theory can be modified to derive simplc expressions describ- 
ing the adsorption capacity of a bed. 

2.1. Definitions of the Statistical Moments 

The breakthrough curves ol)taincti following an injection of a very 
short pulse of adsorbate can be considered a typc of prohability 
distribution in concentration-time coordinatcs. Thc ordinary statistical 
moments #are defined as 

wherc m: is the kth ordinary statistical moment, c ( r )  is the r a t t  of 
hrcakthrough of adsor2,atc a t  tiinc T, T is the time following the pulse 
input of adsorh tc ,  and the central moments (about the mean) are 
defined as 
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CALCULATION OF ADSORPTION BED CAPACITY 561 

where mk is the kth central moment. Because the first central statistical 
momeiit is equal to  zero, we will drop the prime from In: and denote 
the first ordinary moment by m,. 

2.2. Gram-Charlier Series 

The Gram-Charlier Series gives a general method for reconstruct- 
ing a curve from its statistical moments. The general equation for 
these series is 

where H k ( t )  = a Hermite polynomial; c k  = the frequency factor a 
function of the statistical moments; c ( t )  = the rate of breakthrough 
of adsorbate a t  the reduced central time, t ;  t = reduced central time, 
defined as (T - m l ) / u ;  and u = 1/K. 

The elution curve following a pulse (delta function) input is de- 
scribed by the first three terms of a Gram-Charlier series as 

2.3. The Meaning of the Statistical Moments 

The first statistical moment gives the arithmetic mean holdup time 
for a pulse introduced at time T = 0. The second statistical moment, 
?a,, is c’allecl the variance and gives the sum of tzhe squares of the 
deviations from the mean. The square root of ?az is the standard 
deviation u. 

The third moment, m3, furnishes information concerning the sym- 
metry of the distribution curve. A positive value of the skewness 
coefficient, X = n23/u3, indicates tailing of the distribution curve 
towards positive values of t. 

The fourth statistical moment is a characteristic of the flattening 
of the distribution curve in comparison to the normal (Gaussian) 
distribution. The factor E = ( m,/u4 - 3 ) ,  usually called the coefficient 
of excess, can be positive, negative, or zero, with a positive value 
indicating that the distribution is flatter than the normal distribution, 
and a negative value indicating that the reverse is true. 

The higher moments are less important because of the difficulty of 
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562 0. GRUBNER AND D. W. UNDERHILL 

determining their values experimentally. Generally it can be said 
that the higher even moments furnish inore in forination about curve 
broadening and the higher odd rnomentb further characterize the 
skewness. 

2.4. Equations for the Statistical Moments 

For the first m,ornent, which defines the mean holdup time, the foi- 
lowing equation is valid : 

?)21 = (._+,.. + $) (1 + €KC[l + K,1) 

where L is the length of the bed, and E is the ratio E , / c ~ .  

I n  the design of industrial adsorption bedh, the terms 2A/u and 
2D/u2 of Eq. (5)  can be iicghwted because the factor L / I L  will be 
much greater than either 2 A / 2 ~  or 2D/u'. When the L/zi factor 
dominates, the mcwn retention timv i b  unaffected by the mechanisms 
influencing the rate with which ntlborption cquilihrium ia  established 
and the resulting equation for the first nioinent is 

Further, i f  there is no volumal adsorption, K ,  = 1 and Eq. (6) 
reduces to 

ml = to(l + EK')  (7) 
where K' is the partition coefficient. This last expression is analogous 
to  the equation cominonly used in gas chromatography to drscribe 
the breakthrough time for the> pcak of the clution curve. 

The expresbiori for the seconcl statiitical moment, V L ~ ,  dcpcnds on 
the mechanism controlling in-ibs transf(1r I-.cful equations inrty he 
obtained by neglecting the higher pou cr* of the tcriii D / u ,  and a\suni- 
ing that only one iiicchanisni of atlborption occurs, i.e., eithcr ~-01umal 
adsorption, where K c  > 1 aiid li, = 0, or surface aclborption, where 
li, > 1 and X, = 1. This procedure can be eabily adopted to the 
important cases of internal (porc'l diffuion controllvd inas- tranGfer. 
where N, = w ,  I!,, = co, aiid 11, < CO, and film controlled mass 
tranbfer, vJicrc either H ,  and/or I!,, < co and D ,  = co 

From dcrivations gilen carlicr ( 1 ,  2 ) ,  wc have for ma+ transfer 
characterized by the combincd mcclifini~m~ of interpart iclc molecular 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
3
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



CALCULATION OF ADSORPTION BED CAPACITY 563 

and eddy diffusion, plus internal (pore) diffusion followed by surface 
adsorption: 

I (8) 
"'=-1[2"+2*+ 2(1 + KJ2R2u  
m: L u 15[1 + 4 1  + KJ21D; 

For interparticle molecular land eddy diffusion, plus internla1 (pore) 
diffusion followed by volumal adsorption: 

2eKCR2u 
15(1 + cK, )~D;  (9) 

For interparticle molecular and eddy diffusion, plus external film 
mass transfer resistance followed by volumal adsorption : 

2t2Kcu 
$ = z u + 2A + H,(l  + €Kc)2 

Usually either K ,  >> 1 or K ,  >> 1, SO that  the third term in the bracket 
on the right-hand side of Eqs. ( S ) ,  ( 9 ) ,  and (10) can be further 
simplified to  give 

27.4 or __ 
2R2u 2R2u 
1mi' 15~K,Di' HcKc 

for Eqs. (8) ,  (9) ,  and lo) ,  respectively. 
Using these same procedures, simple expressions clan be obtained for 

the skewness coefficient, s = ?n </7)2;. Thus, for interparticle molecular 
and eddy diffusion, plus internal (pore) diffusion followed by surface 
adsorption, in the limiting case, K ,  = 1, K ,  >> 1 : 

24AD - _  + -~ + 12A2 + - m: L2 U 

Similar expressions including volumal adsorption and/or film mass 
transfer resistance can be obtained. 

We omit giving a general term for the fourth land #higher statistical 
moments. The paper of Grubncr ( 1 )  should be referred to for further 
expressions of this type. 

2.5. Description of the Dynamic Adsorption Curve 

I t  can be shown from the literature that the most importlant problem 
in dynamic adsorption concerns mass transfer controlled by intra- 
particle diffusion, and in thris paper only this case is considered in 
detail. 
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564 0. GRUBNER AND D. W. UNDERHILL 

First we seek an  equation to describe the breakthrough curve fol- 
lowing an unit step function input. Assuming a linear adsorption 1so- 
tlierm and first-order mass transfcr kinetics, the relation between the 
elution curve following an unit pulse (delta function) input and the 
eluation curve following an  unit step function (Hcaviside function) 
input is the same as the relation between the probability density and 
problability distribution curves. Therefore, the clcsired equation can be 
readily obtained by integration of Eq. (4 ) ,  yielding: 

where (C/C,)  ( t )  is the ratio of cfflucnt to input concentration of 
adsorbate a t  the reduced central time, t ; ( t )  is the normal probability 
distribution curve, i.e., 

S is the skewness cocfficient, mJu'; anti E is the coefficient 
m4/m: - 3. 

(14) 

of excess, 

If the cxccss term, E ,  i:, negligible, t h r e  is an approximate equation 
describing the breakthrough time for any given value of the concen- 
tration ratio C/C, 

where T denotes the actual breakthrough time (same units as m,) of 
the out,put concentration ratio corresponding to  C/C,, and t ,  is the 
argument of the normal probability integral having a value equal to 
C/C,. Stated in mathcrnatioal terms, 

Both parameters are given in tables whioh are readily av~ail~able (14). 

2.6. Effective Adsorption Bed Capacity 

Thc effective adsorption capacity of an a(l-orl)tion I~etl in wliich 
there is ideal mass transfrr ia equal to 

F* = Cownil (17) 
where C,, ia the inl)ut concentration, u' i- the volumetric flow tlirough 
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CALCULATION OF ADSORPTION BED CAPACITY 565 

velocity, and m, is the first statistical moment. The next step is to 
introduce the ratio of actual to ideal adsorption capacity, F ,  defined 
as F = F,/F”, where F ,  represents the actual capacity value obtained 
when only a specified degree of breakthrough is permitted. 

From Eq. (15) it follows that 

CTt 
(1% F = r/ml = 1 + 2 + 0.167(m3/mzml>(t~ - 1) 

ml 

2.7. Fractional Capacity Loss 

The fractional capacity loss, iM, which gives the fraction of the 
adsorption bed ciapacity loss because of the mechanisms of mass 
transfer present in any real adsorption bed, is 

(19) 
CTt M = 1 - F = - 2 + 0.167(m~/mzml)(1 - t:) 
ml 

We are most interested in the case of mass transfer controlled by 
mass transfer resistance, because mass transfer resistance is the con- 
trolling factor a t  the high carrirr gas velocities that  are of greater com- 
mercial interest. If we accept the simplification for mass transfer 
resistance controlled by internal (pore) diffusion (see Eqs. 11 and 
12), then Eq. (15) clan be rewritten in the form 

Defining as 

4 = (g)“ 
the equation for the fractional adsorption capacity becomes 

F = 1 + @tc + &‘(ti - 1) 

M = -a+tC + b@(1 - t i )  

(22) 

(23) 

and the equation for bhe fraction capacity loss becomes: 

In  the above equations, a and b are numerical constants hiaving the 
values a = 12/15)1/2 = 0.365, and b = 1/21 = 0.0477. 

2.8. Comparison of the Gram-Charlier and Gaussian 
Breakthrough Curves 

It is assumed that the breakthrough curve can be adequately char- 
acterized by the first two terms of a Gram-Charlier series. A com- 
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FIG. 2. Comparison of the Gram-Charlier niid Gaussian brrnkthrough 
c \ l r V w .  

parison of the resulting Gram-Charlier curve with a Gaussian brcak- 
through curve is given in Fig. 2. It is particularly interesting to 
compare these two curves at  the points C/C, = 0.5 and T = ?a,. From 
Eq. (15) we find that  a t  the point C/Co = 0.5 (i.e., t, = 0) 

T = ml(1 - 0 .167~ t~3 /~?~2? t~ l )  (24) 
If the breakthrough curve were described exactly by a Gauskian curve, 
then T would equal m, instead of m l ( l  - 0 .16711~~/ t~2~) )2 , )  a t  the point 
C/C, = 0.5. Thus the factor (1 - 0.167?n1/)n2ni,) gives the ratio of 
breakthrough times bctwecii the Gram-Charlier and the Gaussian 
curves a t  C = 0.5C, (see Fig. 2 ) .  

Similarity, from Eq. 113) we have a t  the time 7 = m, (i.e., t = 0) 

C/C, = 0.3 + S/(idZ (23)  
indicating that  a t  the point T = m,, the  breakthrough curve described 
hy the Gram-Charlicr series is somcwhat higher than the normal 
probability curve, the diffcrencc being Af’/C,, = S/ci.L/G. 

3. THE FRACTIONAL LOSS OF ADSORPTION CAPACITY AS A 
FUNCTION OF MEASURABLE FACTORS 

The practical value of the theory tlevcloped herr is that  it permits 
the dc5ign engineer to calculatc M, thc fractional lo+ of adsorption 
capacity, :is a function of measurable factors, such as the sizc1 of the 
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CALCULATION OF ADSORPTION BED CAPACITY 567 

FIG. 3. The effect of adsorbent particle diameter on the breakthrough 
curves of Masnniune and Smith (11). 

adsorbent particles, the length of the adsorption bed, the flow velocity 
of the carrier gas, and the fractional interparticle void volume. 

3.1. The Effect of Particle Radius 

According to Eq. (23),  the fractional capacity loss is a parabolic 
function of the particle radius, R,  and can be rewritten 
in the simple form 

M = a'& + b*R2 (26) 

where a" and b are factors independent of particle radius. 
We wish to compare the above expression with experimental results 

already in the literature and for this purpose we begin with the 
nitrogen breakthrough curves described in the excellent paper of 
hfabainune and Smith (11) .  The adsorbent was Vycor glass and the 
experimental conditions were maintained in the region of a well- 
[ i c f i ~ ~ d  linear adsorption ibotherm. Figure 3, which is tlaken from their 
papcr, shows the effect of the diametcr of the adsorbent particle on 
the shape of the breakthrough curve. T'aing the experimental pamm- 
cters given in their paper, namely, u = 9.8 cm/sec, L = 2.25 cm, D, = 
4 x 10 2/sec, we calculated the fractional capacity loss for represen- 
tative values of R. Table 1 gives both the theoretical and experimental 
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values. The first ,and second columns of Table 1 list the C/C, and t, 
values of the normal probability distribution, respectively, and the 
last two columns give the experimental and calculated values for the 
fractional capacity loss, M .  

Table 2 gives the effect of particle radius on the fractional capacity 

TABLE 2 

Effect of Particle Radius on the Fractional Capacity Lossa 

Adsorbent Fractional Fractional 
particle radius, capacity capacity 

R (em) R2 M / R  loss, Mtheor loss, M e x p t ~  

0.079 61 x 10-4 7 .4  0.59 0.59 
0.0463 21 x 10-4 8.1 0.37 0.37 
0.0151 2 .3  x 10-4 9.2 0.123 0.14 
0.010 1.0 x 10-4 8 . 4  0.082 0.084 

~~ 

Q Based on data of Masamune and Smith (11). 

loss, 'as predicted from Ey. (26) by assuming a" = 8.25 and b" = 
9.9. The experimental results fit the theoretical plarabolic equation. 

The same dependence of the fractional capacity loss on particle 
radius is observed in experiments of Fultyn (15), who measured tlhe 
breakthrough curves of sulfur dioxide on iactivated charcoal beds over 
a wide range of conditions. From his Fig. 37, we calculatecl a t  the 
breakthrough ratio, C/C, = 0.1, the experimenbal values shown in 
Table 3. These experimental values closely fit the theoretical parabolic 
equation. 

TABLE 3 

Effect of Particle Radius on the Fractional Capacity Lossa 

Adsorbent Fractional Fractional 
particle radius, capacity capacity 

R (em) R2 M / R  loss, M t h e o r  loss, M e x p t l  

0.03 9 .0  x 10-4 40.0 0.120 0.120 
0.048 24.0 x 10-4 29.0 0.140 0.140 
0.070 49.0 x 10-4 22.0 0.170 0.170 

Based on data of Fultyn (16). 
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5 70 0. GRUBNER AND D. W. UNDERHILL 

FIG. 4. The effect of bed lcngtli on the 1~re:~l;tlirougli c u r ~ c ~ s  of Masamune 
m t l  Smith ( 1 1 ) .  

3.2. The Effect of Bed Length 

The effect of bed length on the fractional capacity loss is seen in 
Fig. 4, taken from Rcf. 11. Nuinerical analyses of the effect of bed 
length can be obtained by rearranging Eg. (20) t o  give 

M = u’(1,)-1’2 + b’(1,)-’ (27) 
Table 4 gives thc theorctic‘il :mi cxxperiincnt a1 fractional capacity 
losses vs bed length at  C/C, = 0.1. Theoretical values for the fractional 
capacity losses oh-wr\etl by l ln-amunc and Smith (11), were oh- 
tained hy giving value5 of -52 6 and 163.0 to thc  con~tants  a’ and b’, 
respectively. ,4gaiii the eupcriinc~ntal t h t a  clobcly fit the theoretical 
values. 

TABLE 4 

Effect of Red Length on the E’ract~iorial Capacity LOW 

Red length, Frartioiinl capacity I.’rac+ion:tl c.:tp:tcitg 
I, (cm) loss, 31 ,,,,.,, loss, n1,.,,,,, 

2 25 0 37.5 0 375 
2 70 0 280 0 263 
3 1.5 0 216 0 216 

Based on data of lIaisriiiiiie aiid Sniith (11) 
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CALCULATION OF ADSORPTION BED CAPACITY 571 

? 
ADSORPTION BED LENGTH ( F T )  

FIG. 5. The effect of bed length on capacity [from Browning (IS)] 

The predicted effect of bed length on adsorption bed clapacity is 
supported by Browning’s (IS) study over a very wide range of values 
of the dynamic adsorption of krypton and xenon on activated char- 
coal beds. From Browning’s plot of the change in bed capacity vs bed 
length (reproduced here as Fig. 5 ) ’  values for the fractional capacity 
loss were found and compared with the theoretical values ‘obtained by 
setting a’ = 2.2 and b’ = 0.4. The theoretical and experimental values 
are given in Table 5.  

The effect of bed length on the fractionlal capacity loss also can be 
calculated from Fultyn’s (15 )  experimental data. In  Table 6 the 
fractional capacity losses a t  C/C, = 0.1 are compared with the 
theoretical values obtained by assuming u’ = 115.0 and b’ = 150.0. 

3.3. The Effect of Carrier Gas Velocity 

The effect of carrier gas velocity on the shape of breakthr,ough 
curves is rarely given in the literature, in sharp contrast to the vast 
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572 0. GRUBNER AND D. W. UNDERHILL 

TABLE 5 

Effect of Bed Length on the Fractional Capacity L o w  

E'rartio~ial E'r act ional 
Bed length, capae1 ty capacity 

L (cm) loss, Aftl leur loss, ilfexptl 

2 2  0 47 0.47 
7 2  0 32 0 32 

14 5 0 25 0 26 
21 5 0 20 0 21 
29 5 0 18 0 19 
3,5 0 0 17 0 17 

a Based on data of Browning (16). 

number of papers giving the so-called Height Equivalent of a Theo- 
retioal Pliate (HETP) as a function of the carrier gas velocity. The  
shape of the breakthrough curve a t  a given carrier gas velocity is very 
imporbant because i t  determines the efficiency of an adsorption bed 
a t  that particular velocity. 

The mechanism controlling the shape of the breakthrough curve 
depends on the carrier gas velocity. At oarrier gas velocities below 
10 cm/sec, intcrparticle cffects (molecular and eddy diffusion) must 
be taken into account. At carrier gas velocitics greater than 10 cm/ 
sec, intraparticle diffusion controls the establishment of equilibrium. 
Furthermore, if the carrier gas velocity is greater than 30 cm/sec, the 
flow will be a t  least partly turbulent and this must be tlaken into 
account. 

Equation (28) gives the predicted effect of carrier gas velocity on 
t.he fractional capacity loss in the regime of internal (pore) diffusion: 

TABLE 6 

Effect of Bed Length on t,he Fractional Capacity Loss' 

Fractional Fractional 
Bed length, capacity capacity 

L (cm) loss, M t h e o r  loss, M,,,tl 

100 0.10 0.10 
70 0.12 0.12 
34 0.  1.5 0.15 

Based on data of Fiiltgn ( I . ' ) .  
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CALCULATION OF ADSORPTION BED CAPACITY 573 

M = a”(u)”2 + b”u (28)  

The effect of carrier gas velocity ‘on the shape of the breakthrough 
curve has been measured in some of the experiments of Fultyn ( 1 5 ) .  
The breakthrough curves given in his Fig. 36 were normalized by us 
by ‘assuming m, = 100.0 and the resulting values are listed in Tlable 7. 

TABLE 7 

Effect of Carrier Gas Velocity on the Fractional Capacity Lossa 

Carrier Fractional 
gas velocity, capacity loss, 
u (cm/sec) u1/2 Mexptl M/ullz 

50 
40 
30 
20 

7.2 0.150 0.021 
6 .3  0.130 0.021 
5.4 0.110 0.020 
4 . 5  0.080 0.019 

a Based on data of Fultyn (16). 

I n  Table 7 the values of m (u)-lI2 appear to be constant, indiclating that  
in his experiments the first term on the right-hand side of Eq. (28) 
controlled the fractional adsorption capacity loss. 

De  Bruijn et al. (17 )  present considerable data on adsorption of 
low boiling gases ‘at low temperatures on charcoal. The dependence 
of the point C/C,  = 0.1 on the carrier gas velocity is found in their 
Fig. 11, which gives the breakthrough curve for the dynamic ad- 
sorption of methane on charcoal. In  Table 8 values for the fractional 

TABLE 8 

Effect of the Carrier Gas Velocity on the Fractional Capacity Loss” 

Carrier gas Fractional 
velocity, capacity 

u (cm/sec) u1/2 loss, Mexptl M/u112 M /u  

4.0 2.0 0.036 0.018 0.009 
8 .7  2.95 0.048 0.016 0.005 

a Based on data of de Bruijn et al. (17) .  

oapacity loss are listed and compared with values obbained from Eq. 
(28) by assuming a”’ = 0.022 and b” = -0.002. 
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450) 1 I I 1 1 

FIG. 6.  The effect of external I1orosit.v on thr broadrning of breuk- 
through curves LEmm Browning (16) 1. 

3.4. The Effect of External Porosity 

Very little is known of the effect of external porosity on bhe per- 
formance of an adsorption bed. Browning’s (16 )  finding tha t  an 
increase in external porosity greatly diminidies thc pcrformance of a n  
adsorption bed helps bridge this gap in our knowledge. 

The breakthrough curves given in Browning’s (16) Fig. 19 are 
reproduced here in Fig. 6. To analyze these curves we need to know 
the effect of porosity on the first and second statistical moments. From 
the definitions of porosity givcn in Section 1.2, 

When internal (pore) diffusion controls mass transfer, the effect of 
the external porosity on the first and second statistical moments is 
given by : 
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CALCULATION OF ADSORPTION BED CAPACITY 575 

From Eq. (30) it  appears that  the relative chiange of the first moment 
with external porosity is inversely proportional to  the porosity, ce, 

and this effect is not great at high porosities. On the other hand, the 
effect ,of external porosity on the second moment, rn,, is proportional 
to 1/(1 - c~), and this effect can become very strong at high porosities. 

Both of these conclusions appear to be confirmed in the breakthrough 
curves given in Fig. 6 .  The average holdup times are nearly the same 
(the lower curve belongs to a bed containing slightly less adsorbent), 
but the porosities of the beds are quite different and as expected there 
is a great difference in the widtih of the curves. 

The influence of the porosity ratio, C, on the HETP (or, following 
our analysis, on the second moment, m,) can be seen from experiments 
of Habgood and Hanlan ( 1 8 ) .  Figure 6 of their paper presents a series 
of HETP values for the dynamic adsorption of different hydrocarbons 
on charcoal. Keeping in mind tbat their HETP is approximately 
related to our m, by the equation 

HETP = m2L/mi (33) 
i t  is seen that the slope of the HETP points, when plotted against 
carrier gas velocity, is proportional to +z a t  higher velocities. 

Habgood and Hanlan (18)  examined adsorption on unactivated and 
activated charcoal. For both charcoals, the mercury and helium poro- 
sities are given, making i t  possible to  calculate the porosity ratio, c. 

From experiments with ethane a t  100°C (Table 9),  the ratio of HETP 

TABLE 9 

Effect of the Porosity Ratio, E ,  on Curve Broadening. 

Density, Density, HETP Slope Porosity 
Hg He E slope ratio ratio 

~ 

Activity 1 4 1 100 1 870 0 68 2 4 

Activity 149 0 611 2 07: 2 33 0 65 
3 67 3 45 

~~ ~ 

a Based on data of Habgood and Harilaii (18). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
3
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



576 0. GRUBNER AND D. W. UNDERHILL 

slopes (or +* values) is inversely proportional to  the E ratio, as 
required by Eq. (31) .  Similar results were obtained from analyses 
applied to  the ten other compounds investigated by Habgood and 
Hanlan (18). 

Independent but similar results for the effect of the porosity ratio 
on m, and m, (determined from pulses of clarbon dioxide passing 
through columns containing 'activated charcoal, pumice, or glass beads) 
were reported in 1966 by Grubncr and co-workers (19). 

4. DISCUSSION OF THE RESULTS 

First, let us discuss the theoretical model and its relationship to a 
real adsorption bed. The basic assumption is that  the model operates 
in the region of 'a linear adsorption isotherm, with mass transfer con- 
trolled by first-order kinetics. The assumption of a linear adsorption 
isotherm is reasonable for most dynamic adsorption experiments per- 
formed a t  low concentrations. For some light gases, the linear range 
extends up to a gas concentration of a t  least several per cent (depend- 
ing, of course, on the temperature) and for this reason it is a good 
model for many imporbant problems, suoh as the recovery of radio- 
active fission gases. Of course the modcl still is applicable to  heavier 
compounds a t  greater dilutions. The  assumption of first-order kinetics 
seems plausible, especially for the case where the mass transfer rate 
is controlled by internal (pope) diffusion. 

There is ample evidence in the literature for the importlance of pore 
diffusion to ladsorption chromatography and industrilal gas adsorption. 
Nevertiheless, with the exception of surface diffusion, our model ac- 
counts for all possible mechanisms of mass transfer. Even surface 
diffusion could probably be handled in a way similar to tha t  used by 
Masamune and Smith (11). It is highly improbable that many mass 
transfer mechanisms could be important a t  the same time, but even 
this extreme case can be described by the statistical moments theory. 

This theoretical model omits the change in gas velocity resulting 
from tlhe pressure drop across the bed. This simplification is not 
always valid for gas chromatography, hut it is generally quite a+  
ceptahle for describing dynamic adsorption in industrial adsorbers. If 
iiecebsary, the statistical moments can be modificri to account for the 
effect of a pressure drop ( 2 0 ) .  

Two types of adsorption were considercd : volurnal and surface 
adsorption. Volumal adsorptioii is ratllcr t~ncoin~~lon ,  but equations 
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CALCULATION OF ADSORPTION BED CAPACITY 577 

including volumal adsorption may be needed to  describe “coated” 
adsorbents. 

We should also discuss the limitations of the concepts used in the 
theory developed here. The definitions of tihe dimensions of the ad- 
sorption bed, as well as the definitions of the porosity, seem clear. 
Difficulties arise in the measurement of adsorbent particle size, 
especially if the adsorbent particles are irregular. We assumed that 
the particles are spherical, and the differences are adjusted for in the 
“effective diffusion coefficient.” Nevertheless, if adsorbent particles of 
various diameters are present, one would expect thah the larger 
partircles will have a greater influence on the deviations from equilib- 
rium than do the smaller ones. 

The definitions of the various diffusion coefficients, including the 
eddy diffusion constant, have been given. The assumption that  these 
coefficients ‘are concentration independent is necessary for first-order 
kinetics. 

The intraparticle diffusion constant is an empirical factor describing 
the effective combination of the various intraparticle mass transfer 
phenomena. The transport of adsorbate into the [adsorbent particle 
can be very complex, especilally if surface diffusion is present. 

Usually pore diffusion is tihe most important mechanism of intra- 
particle mass transfer. It should be mentioned that the nature of pore 
diffusion depends on the diameter of the intraparticle pores. If these 
pores hlave a relatively large diameter (molecular mean free path of the 
molecules < pore diameter), intraparticle mass transfer takes place 
by normal molecular diffusion. As the pores become narrower (molec- 
ular mean free path + pore diameter) the character of the flow 
changes to Knudsen diffusion and the intraparticle diffusion coefficient 
must assume a value appropriate for Knudsen diffusion. In  eitiher case 
the pore diffusion coefficient is limited to  a relatively narrow range of 
values. The smallest value is probably that of the Knudsen diffusion 
coefficient, which at ambient temperatures will not fall much below 
0.01 cm’/sec. On the other hand, in the absence of surface diffusion, the 
intraparticle diffusion coefficient cannot be greater than the bulk 
diffusion coefficient, the upper limit of xhiah will be about 0.2 cm2/ 

We omit discussing the mass transfer rate constants, H ,  and H,, 
because the equations given here assume mass transfer is controlled 
by pore diffusion. 

The equations used here for the statistical moments were derived 

9 3 C .  
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578 0. GRUBNER AND D. W. UNDERHILL 

using approximations described elsewhere (1, 2) .  We have found that 
these approximations are reasonable and the inaccuracies introduced 
by their use lie within the limits of experimental error. 

The equation for the second statistical morncnt resembles the 
HETP equation, which was derived scmiempirically for the case of 
gas chrornat,ography by van Dceriitcr e t  al. (21) .  It is a common 
error to  assume tha t  the HETP represents tlie bed length required to 
establish equilibrium. There is no discrctc value for such a distance 
and therefore no such meaning for the HETP. It is the equation tihat 
has proved useful, not the concept, which has already been adequately 
criticized in thc literaturc ( 3 ) .  The basic meaning of the H E T P  
equation, and its relationship to the statistical moments, can be 
brought out in a very rough way by 

where ~ 2 ,  is the variance of the breakthrough curvc in units of lcngth. 
Basically the HETP concept describes a rclationship between the 

first two moments of the breakthrough curve. From a rough approxi- 
mation used in gas chromatography, 

then 

or 

D, = Do + Dl11 + D ~ u ~  

where D, is the generalized diffusion conatant Thua the HETP 
equation can tie considered an equation tleacribing the dcpcndence of 
a generalized diffusion constant on the carrier gas velocity. 

The theory of statistical moments furnishcs ub, however, not only 
the equations for the first two momcnts, but also the equations for 
hlghcr momcnts. These latter Expressions are almost as importmatit as 
the equation for the second morncnt Elpccially interesting i> t h c  
equation for thc sltcwiiess of tlie breakthrough curve, from \vhicli it 
can he shon n that  thc hrcakthrough ciirvc all\ ay. positively skcived 
This has tlic important consequence that C/C,, va1ui.- sinallcr than 1 4  

are on the average nearer thv nican than tlic correspontling (’/Pi) value> 

(37) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
3
6
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1
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higher than %, considerably increasing the effective adsorption 
capacity a t  low values of C/C,. 

Equation (13) is quite simple and can be used for a description of 
the breakthrough curve without the need for .computer integrations. 
Calculating the statistical moments is somewhat tedious but can be 
performcd on a desk calculator. We belicve tlhat it is important to  
realize that Eq. (13) can be further simplified to give expressions for 
the adsorption bed capacity 'and adsorption bed capacity loss. 

From the qualitative point of view, all the basic rel'ationships 
required by the theory appear fulfilled. The extensive data of Masa- 
mune antl Smith ( 1 1 )  permit the quantiativc agreement between theory 
and experilnient to be examined. The results are satisflact,ory, even a t  
low C/C, values, which are often difficult to predict. Yet these simple 
equations, because tlhey include simultfaneously the #different phe- 
n'oinenla affecting bed effi'ciency, appear to fulfill the requirements given 
by Kovach (12). Nevertheless, approximations were made, and the 
error introduced may not always lie within the experimental error. 

5. FUTURE DEVELOPMENT OF THE THEORY 

The theoretical expressions given here permit the efficiency of an 
adsorption bed to be related to experimental conditions. From an 
engineering standpoint, the value of the theory lies in its ability to 
rec~alculate the data from a given experiment to other conditions, 
allowing a design engineer to optimize the adsorption procedure. This 
theory may also prove useful in the measurement of mlass transfer and 
equilibrium consbants, especially for complicated systems, or 'at 
elevated temperatures, where classical adsorption methods meet with 
extreme difficulty. On the other hand, experimental work is needed 
to estimate the limits of validity of the equations developed here. If 
this report stimulates further investigations in this field, its purpose 
may be regarded as fulfilled. 
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List of Symbols 

coefficient of eddy diffusion 
constant = .\/L/13 ( L  0.363) 
constants 
constant = 1/21 ( A  0.0477) 
constants 
effluent concentration 
input concentration 
adsorbate concentration in the interparticle spaces 
rate of breakthrough of adsorbate 
frequency factor for a Hermite polynomial 
adsorbate concentration in  the intraparticle pores 
coefficient charactmizing the effect of interparticle 
molecular diffusion 
over-all effective diffusion coefficients 
coefficient of the diffusion in the pore space 
constants for t h ~  ovcr-dl diffusion coefficiwt 
coefficient of CXCCSS, I$ = (m4/mi - :<) 
ratio of actual to ideal adsorption bed capacity 
actual adsorption bed capacity 
ideal adsorption bed capacity 
mass transfer rate constants 
Hermite polynomial 
height equivalent of a theoretical plate 
partition coefficient 
adsorption equilibrium constants 
length of the adsorption hcd 
ordinary statistic:d momcnts defined by Eq. (1) 
ccntral statistical moments defined b y  Eq. ( 2 )  
fractional loss of :Idsorption tlcd capacity 
amount of adsorbate :dsorhrd on thc surface of  a unit 
volume of pore spacc 
cross sectional area of thtl bcd 
particle radius 
skewness coefficient, AS = m.j/u+ 
reduced central time, t = (T - ml) /c  
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argument of the normal probability curve having a value 
equal to C/Co 
breakthrough time of a gas chromatographic peak 
interparticle linear velocity of the carrier gas 
volumetric flow rate 
porosity of the adsorbent particle 
ratio of the internal and external porosity, t = ti/€* 

external porosity 
internal porosity, ti = p(1 - EJ 
over-all porosity, €0 = e i  + ce 

standard deviation, u = ~ G z  
standard deviation in units of length 
actual breakthrough time 

modulus defined as 4 = (%)IZ 

normal probability curve for the argument, t 
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